Kód kurzu: VMW_DSGN This five-day course provides comprehensive training on considerations and practices to design a VMware NSX® environment as part of a software-defined data center strategy. This course prepares the student with the skills to lead the design of an NSX environment, including design principles, processes, and frameworks. The student gains a deeper understanding of the NSX architecture and how it can be used to create solutions to address the customer's business needs | Pobočka | Dnů | Cena kurzu | ITB | |------------|-----|------------|-----| | Praha | 5 | 2 060 € | 0 | | Bratislava | 5 | 2 060 € | 0 | Uvedené ceny jsou bez DPH. # Termíny kurzu | Datum | Dnů | Cena kurzu | Typ výuky | Jazyk výuky | Lokalita | |------------|-----|------------|-----------|-------------|------------------------------| | 19.05.2025 | 5 | 2 060 € | Online | EN | Gopas Praha Přeprodej online | | 16.06.2025 | 5 | 2 060 € | Online | EN | Gopas Praha Přeprodej online | Uvedené ceny jsou bez DPH. #### Pro koho je kurz určen Network and security architects and consultants who design the enterprise and data center networks and NSX environments #### Co Vás naučíme By the end of the course, you should be able to meet the following objectives: - Describe and apply a design framework - Apply a design process for gathering requirements, constraints, assumptions, and risks - Design a VMware vSphere® virtual data center to support NSX requirements - Create a VMware NSX® Manager™ cluster design - Create a VMware NSX® Edge™ cluster design to support traffic and service requirements in NSX - Design logical switching and routing - Recognize NSX security best practices - Design logical network services - Design a physical network to support network virtualization in a software-defined data center - Create a design to support the NSX infrastructure across multiple sites - Describe the factors that drive performance in NSX #### Požadované vstupní znalosti Before taking this course, you must complete the following course: - VMware NSX: Install, Configure, Manage [V4.0] You should also have understanding or knowledge of these technologies: - Good understanding of TCP/IP services and protocols Knowledge and working experience of computer networking and security, including: - Switching and routing technologies (L2 and L3) - Network and application delivery services (L4 through L7) - Firewalling (L4 through L7) - vSphere environments #### **GOPAS Praha** Kodaňská 1441/46 101 00 Praha 10 Tel.: +420 234 064 900-3 info@gopas.cz #### GOPAS Brno Nové sady 996/25 602 00 Brno Tel.: +420 542 422 111 info@gopas.cz ### **GOPAS Bratislava** Dr. Vladimíra Clementisa 10 Bratislava 821 02 Tel.: +421 248 282 701-2 info@gopas.sk The VMware Certified Professional - Network Virtualization certification is recommended. #### Studijní materiály Studijní materiál VMware. #### Osnova kurzu #### 1 Course Introduction - Introduction and course logistics - Course objectives #### 2 NSX Design Concepts - Identify design terms - Describe framework and project methodology - Describe the role of VMware Cloud Foundation™ in NSX design - Identify customers' requirements, assumptions, constraints, and risks - Explain the conceptual design - Explain the logical design - Explain the physical design #### 3 NSX Architecture and Components - Recognize the main elements in the NSX architecture - Describe the NSX management cluster and the management plane - Identify the functions and components of management, control, and data planes - Describe the NSX Manager sizing options - Recognize the justification and implication of NSX Manager cluster design decisions - Identify the NSX management cluster design options ### 4 NSX Edge Design - Explain the leading practices for edge design - Describe the NSX Edge VM reference designs - Describe the bare-metal NSX Edge reference designs - Explain the leading practices for edge cluster design - Explain the effect of stateful services placement - Explain the growth patterns for edge clusters - Identify design considerations when using L2 bridging services #### 5 NSX Logical Switching Design - Describe concepts and terminology in logical switching - Identify segment and transport zone design considerations - Identify virtual switch design considerations - Identify uplink profile and transport node profile design considerations - Identify Geneve tunneling design considerations - Identify BUM replication mode design considerations #### 6 NSX Logical Routing Design - Explain the function and features of logical routing #### GOPAS Praha Kodaňská 1441/46 101 00 Praha 10 Tel.: +420 234 064 900-3 info@gopas.cz # GOPAS Brno Nové sady 996/25 602 00 Brno Tel.: +420 542 422 111 info@gopas.cz ### GOPAS Bratislava Dr. Vladimíra Clementisa 10 Bratislava, 821 02 Tel.: +421 248 282 701-2 info@gopas.sk - Describe the NSX single-tier and multitier routing architectures - Identify guidelines when selecting a routing topology - Describe the BGP and OSPF routing protocol configuration options - Explain gateway high availability modes of operation and failure detection mechanisms - Identify how multitier architectures provide control over stateful service location - Identify EVPN requirements and design considerations - Identify VRF Lite requirements and considerations - Identify the typical NSX scalable architectures #### 7 NSX Security Design - Identify different security features available in NSX - Describe the advantages of an NSX Distributed Firewall - Describe the use of NSX Gateway Firewall as a perimeter firewall and as an intertenant firewall - Determine a security policy methodology - Recognize the NSX security best practices #### 8 NSX Network Services - Identify the stateful services available in different edge cluster high availability modes - Describe failover detection mechanisms - Compare NSX NAT solutions - Explain how to select DHCP and DNS services - Compare policy-based and route-based IPSec VPN - Describe an L2 VPN topology that can be used to interconnect data centers - Explain the design considerations for integrating VMware NSX® Advanced Load Balancer™ with NSX # 9 Physical Infrastructure Design - Identify the components of a switch fabric design - Assess Layer 2 and Layer 3 switch fabric design implications - Review guidelines when designing top-of-rack switches - Review options for connecting transport hosts to the switch fabric - Describe typical designs for VMware ESXi™ compute hypervisors with two pNICs - Describe typical designs for ESXi compute hypervisors with four or more $\ensuremath{\mathsf{pNICs}}$ - Differentiate dedicated and collapsed cluster approaches to SDDC design #### 10 NSX Multilocation Design - Explain scale considerations in an NSX multisite design - Describe the main components of the NSX Federation architecture - Describe the stretched networking capability in Federation - Describe stretched security use cases in Federation - Compare the Federation disaster recovery designs #### 11 NSX Optimization and DPU-Based Acceleration - Describe Geneve Offload - Describe the benefits of Receive Side Scaling and Geneve Rx Filters - Explain the benefits of SSL Offload - Describe the effect of Multi-TEP, MTU size, and NIC speed on throughput # GOPAS Praha Kodaňská 1441/46 101 00 Praha 10 Tel.: +420 234 064 900-3 info@gopas.cz ### GOPAS Brno Nové sady 996/25 602 00 Brno Tel.: +420 542 422 111 info@gopas.cz ### GOPAS Bratislava Dr. Vladimíra Clementisa 10 Bratislava, 821 02 Tel.: +421 248 282 701-2 info@gopas.sk - Explain the available enhanced datapath modes and use cases - List the key performance factors for compute nodes and NSX Edge nodes - Describe DPU-Based Acceleration - Define the NSX features supported by DPUs - Describe the hardware and networking configurations supported with DPUs GOPAS Praha Kodaňská 1441/46 101 00 Praha 10 Tel.: +420 234 064 900-3 info@gopas.cz GOPAS Brno Nové sady 996/25 602 00 Brno Tel.: +420 542 422 111 info@gopas.cz GOPAS Bratislava Dr. Vladimíra Clementisa 10 Bratislava, 821 02 Tel.: +421 248 282 701-2 info@gopas.sk